1.4 Linear Inequalities in One Variable

1. Definition: A linear inequality in one variable, x, is defined as any relationship of the form:

$$
\begin{aligned}
& a x+b>0, a x+b<0 \\
& a x+b \geq 0, a x+b \leq 0
\end{aligned}
$$

2. The solution set to an inequality is the set of real numbers that makes the inequality a true statement.
Example: $-2<x \leq 3$
a. Graph:
b. Interval Notation: ($-2,3$]
"(": open interval, not including endpoint; "[": close interval, including endpoint.
c. Set-Builder Notation: $\{x \mid-2<x \leq 3\}$
(The set of all x value such that x is less than and equal to 3 and greater than -2)
3. Properties:
a. Addition property of inequality: If $a<b$, then $a+c<b+c$
b. Subtraction property of inequality: If $a<b$, then $a-c<b-c$
c. Multiplication/Division property of inequality: Multiplied/Divided by a negative number, the sign must be reversed.

Example 1: Solving a Linear Inequality:
Solve the inequality. Graph the solution and write the solution set in interval notation.
a. $3 x-7>2(x-4)-1$
b. $-2 x-5<2$
c. $-6(x-3) \geq 2-2(x-8)$
d. $\frac{-5 x+2}{-3}>x+2$

Example 2: Solving a Linear Inequality Application
Beth received grades of $97 \%, 82 \%, 89 \%$, and 99% on her first four algebra tests. To earn an A in the course, she needs an average of 90% or more. What scores can she receive on the fifth test to earn an A?

Example 3: Solving a Literal Equation:

The number of registered passenger cars, N (in millions), in the United States has risen since 1960 according to the equation $N=2.5 t+64.4$, where t represents the number of years after $1960(t=0$ corresponds to $1960, \mathrm{t}=1$ corresponds to 1961 , and so on). For what years was the number of registered passenger cars less than 89.4 million?

